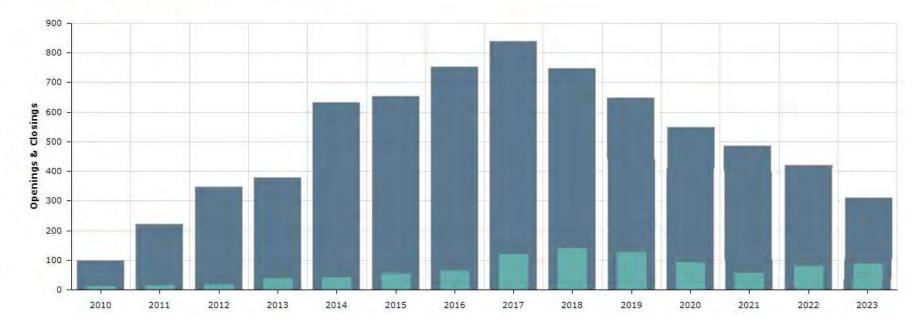
Winery and Brewery Wastewater Production and Management

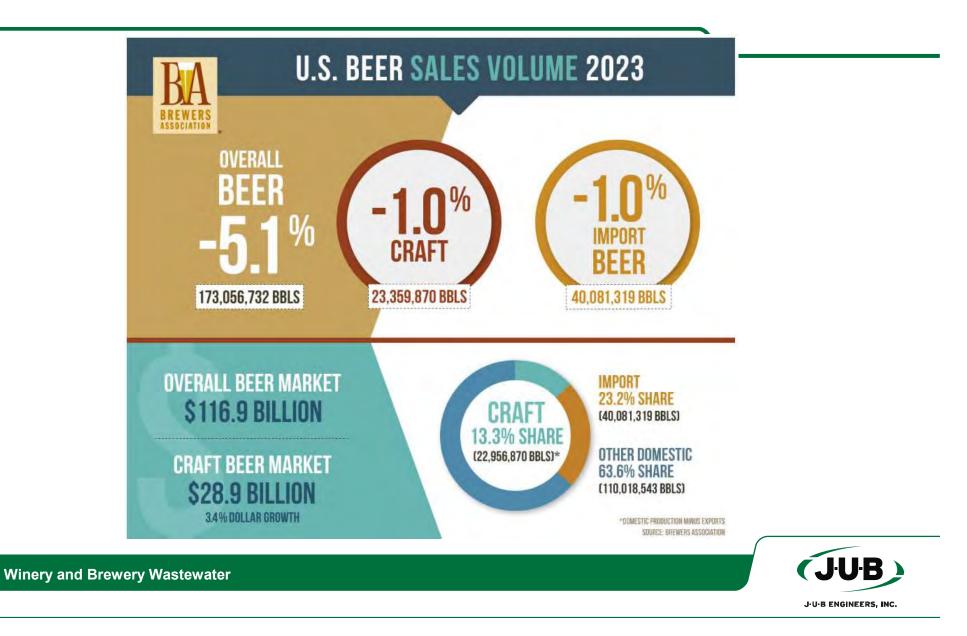
Brett M. Converse P.E., Ph.D. Senior Wastewater Engineer


Outline

- Beer
- Wine
- Flows and Loads (Equivalent Dwelling Units)
- Treatment/Disposal
 - On-site
 - Discharge to Municipality
- Impacts
- Mitigation Strategies
- High Strength Surcharge

Beer

Micro Openings and Closings*


Still Growing

Recent U.S. Brewery Count

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2022 to 2023 % Change
Craft	4,803	5,713	6,661	7,618	8,419	8,921	9,210	9,675	9,761	0.9%
Regional Craft Breweries	178	186	202	230	240	220	223	261	257	-1.5%
Microbreweries	2,684	3,319	3,956	4,518	1,917	2,003	2,007	2,132	2,092	-1.9%
Taprooms					3,091	3,389	3,643	3,771	3,910	3.7%
Brewpubs	1,941	2,208	2,503	2,870	3,171	3,309	3,337	3,511	3,502	-0.3%
Large/Non-Craft	44	67	106	107	138	171	174	149	145	-2.7%
Total U.S. Breweries	4,847	5,780	6,767	7,725	8,557	9,092	9,384	9,824	9,906	0.8%

2023 Sales Volume

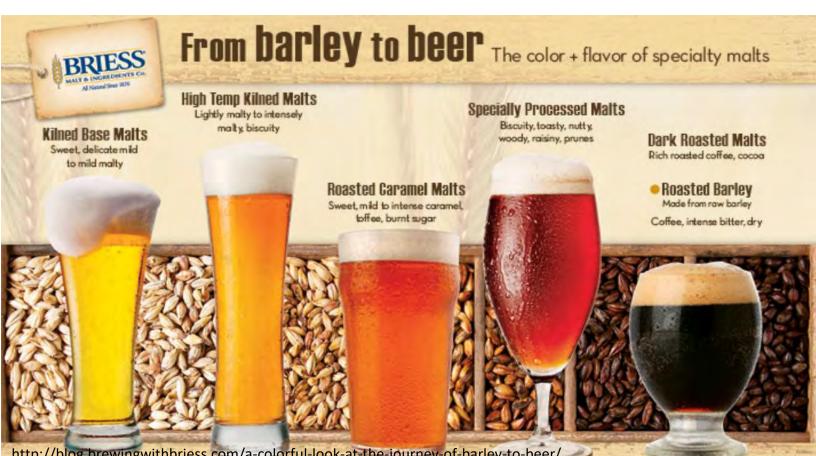
Making Beer, Off-Site

- Good water Municipal, Groundwater
- Agricultural Crop:
 - Barley (mostly)
 - Oats
 - Rice
 - Corn
 - Wheat
 - Hops

- Malting prep the grain
- Kiln
- Roasting
- Transportation to site, material and customers
- Transportation from site

Why Malt

- Grain stores energy for growth as starch
- Grain has enzymes to convert the starch to usable food
- Malting starts the growth process.
- Stops the growth process after enzymes are prepped
 - Diastatic power measure of enzymes
- Enzymes convert starch to fermentable sugar
- Yeast convert sugar to ethanol



Malting and Roasting

- Seep, Dry, Seep, Dry
- Small Root will Grow
- Germinate
- Keep in cool moist place
- Internal leaflet grow
- Stop germination
- Dry, clean you have pale malted Barley – Pale beers
- Roast as desired
 - Brown and dark beer

Roast

http://blog.brewingwithbriess.com/a-colorful-look-at-the-journey-of-barley-to-beer/

Making Beer – On Site

- Mashing
- Lautering / sparging
- Boiling
 - hops (bitter, flavor, aroma)
- Fermenting, the magic
- Bottle / Keg
- Storing
- Cleaning and Sanitizing (a lot)
- Serving

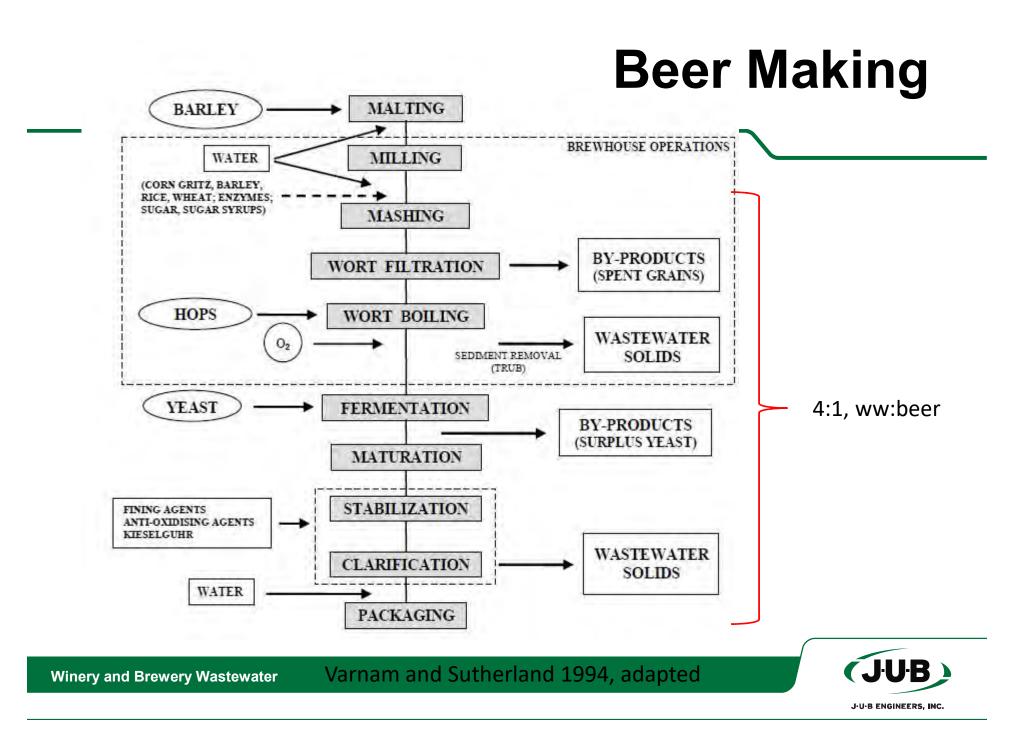
Mashing

- The grain has a lot of starch molecules
- Enzymes naturally in the grain
- Enzymes convert starch into plant food (sugar)
- Amylase (A and B)
- We highjack that sugar and ferment into alcohol

Mashing

- Done in a specific vessel
- Spent grain (2.2 to 5 wet-lb per gallons)
 - Raked out of mash vessel into wheel cart
 - Dumpster (not down the drain)
 - Leachate pH 4.8 to 6
- Cleaning mash vessel
 - Clean in place with high pressure water
 - High pH, caustic cleaner
 - 130 degree water
 - Rinse

Boiling Sweet Wort


- Sweet Wort move to Boil Kettle
- Boiled for 60 minutes (sanitize)
 - Bittering hops (60-minute boil)
 - Flavor hops (15-minute boil)
 - Aroma hops (5-minute boil)
- Now you have hopped wort, moved to fermenter
- Clean Boil Kettle
 - Spent hops, rake from kettle dumpster
- CIP, hot, high pH

Fermenting

- Wort cooled to ~<70 degrees
 - Pumped to fermenter through heat exchanger
 - Clean Heat Exchanger
- Wort in fermenter
- Yeast "making beer"
- Beer now in fermenter
- Transferred to bottles, cans, kegs
 - Clean and Sanitize serving containers
- Clean fermenter,
 - CIP, High pH, Low pH sanitizer, yeast

Making Beer Summary

- Growing Barley, off-site by farmer
- Malting, off-site by maltster
- Roasting, off-site by roaster
- Mashing, Starch to Sugar
- Boiling Hopping
- Fermenting
- Bottle / Keg (more cleaning)
- Odor ?
- 4 gallons of WW per gallon of Beer

Beer Wastewater

- 1 gallon of Beer (3-5) gallons of WW
- BOD₅ (biochemical oxygen demand after 5 days)
 - 1,500 mg/l, Low
 - 4,500 mg/l, average (large SD)
 - 35,000 mg/l, Dump bad batch (3.5%)
 - 55,000 mg/l, Imperial (9%)
- TSS
 - Function of solids capture (target 200<TSS<1000)
- pH < 3 ranges ph>10
- N & P, 30 to 100 mg/l
- Heat
- Anytime, Year-round, can store ingredients
- Grains & Hops can't go down the drain

Impacts - Beer, Smallish

- 3 Barrel Brew House
- 375 gallons of ww per brew
 - 1.65 EDUs hydraulic load just for brew
- BOD = 4,500 mg/l
 - 14 Ib of BOD (~1 hp of air)
 - Load equal to 24 to 31 homes
- Grains don't go down the drain!
- 3 batches per day !

EDU at \$50/month

- 3-barrel brew house
- 1.65 EDUs hydraulic load
 - \$82 / month
 - \$0.11 per pint
- 24 EDUs organic load
 - \$1,220 / month
 - \$1.64 per pint

- The day discharged, not the next
- 80 pounds of biomass (17.5%)

Impacts - Beer, Larger

- 10,000 Barrels per year
- 21 EDUs hydraulic
- 310 EDUs organic
- 4 to 7 days per week
- Moses Lake

Fear Beer

- Concerned ? (Yes, but address)
 - Relative flow and load
 - 10,000 barrel/yr, 310 EDUs YES
 - 3-barrel batch, 24 EDUs (day of) Maybe
 - Existing capacity and ability
 - Growth, domestic and beer
- What to charge?
- Be fair Charge for service

Addressing Flow and Load

- Pre-treatment
 - pH adjustment
 - Flow equalize
 - Over days, over hours
 - Break up discharge to minimize impact.
 - Source separation
 - <u>High strength manage separately</u>
 - Low strength to sewer with surcharge fee?
- Actual treatment get to later

Addressing Flow and Load

• Source separation

- High strength - manage separately

- Bad Batch?
 - 3 barrel @ 5% ABV
 - -91 equivalent dewing units (up from 24)

Wine

Wine

- Wine Grape
 - Smaller than table grapes
 - Seeds
 - More sugar
 - More juice
 - Thicker skins

Wine Grapes vs. Table Grapes

WineFolly

Grape Harvest

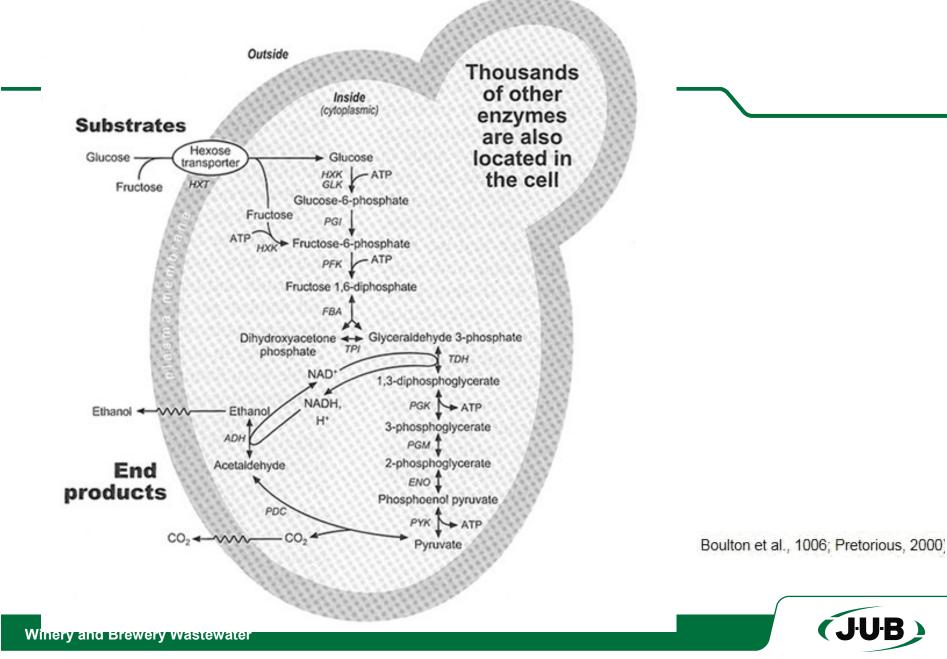
- Harvest, what comes into the winery
 - Grapes (sugar already in grapes)
 - Stems
 - Seeds
 - Pulp
 - Skins
 - Fresh Water
 - Chemicals, cleaning, pH adjustment, O₂ scrubbing

Grapes

- What Winery Keeps
 - Grapes, relieved of Juice converted to wine
 - Must (Fresh Juice with skins, seeds, stems
 - Pomace = Solids
 - Stems
 - Seeds

– Skins

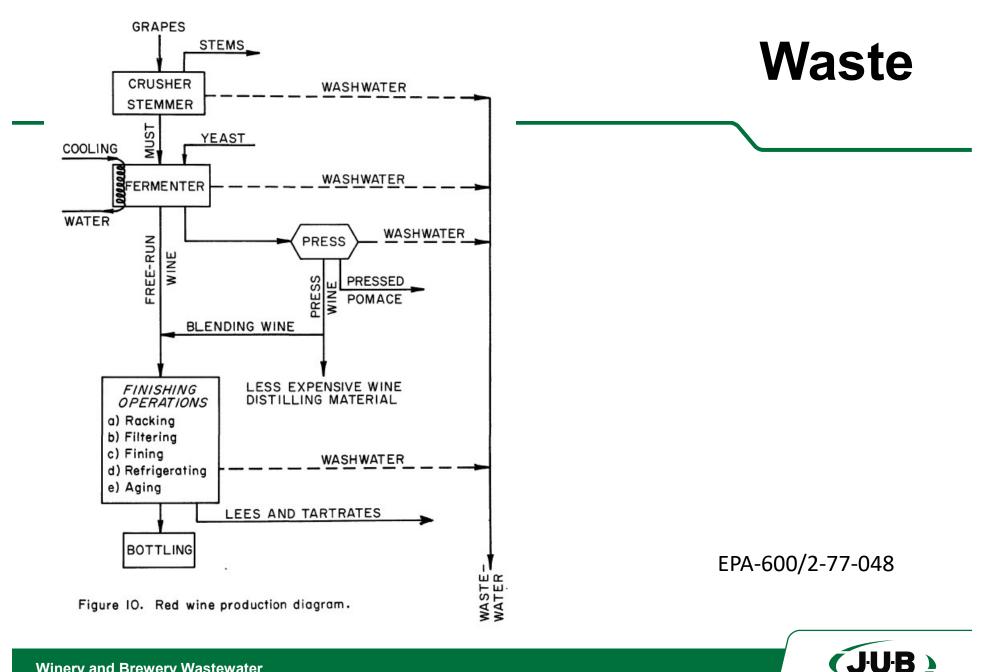
Grapes


- What Leaves the Winery
 - Wine
 - Lees (yeast cells, skins, other particles)
 - Wastewater
 - Chemical cleaning waste
 - Sanitation chemicals
 - Carbon dioxide

Making Ethanol

- Glycolysis
- Glucose (Sugar) into pyruvate (1:2)
- And so on to Ethanol
- Complete pathway, 10 reactions
 - 1 molecule of glucose (6 carbons), into
 - -2 molecules of Ethanol (each with 2 C), and
 - -2 molecules of carbon dioxide (each with 1 C)

J·U·B ENGINEERS, INC.


Making Wine (with apologies)

- Grape Juice
 - 22% sugar
 - (22 grams sucrose in 100 grams juice)
 - $-C_{12}H_{24}O_{12} \rightarrow 4C_2H_5OH + 4CO_2$
 - $-(100g \rightarrow 51g)$
 - 22% sugar turns into ~11% alcohol in wine

Making Wine (with apologies)

Remove Stems	Clean
 Crush (more like breaking) 	
 Pressing (get all the juice) 	And
 Clarification of must 	
 Condition must 	Sanitize
 Ferment (red w/ red skins) 	
• Press	Throughout
• Tank	
Barrel	The
 Filter (clarified/stabilized) 	
• Bottle	
• Age	Process

J-U-B ENGINEERS, INC.

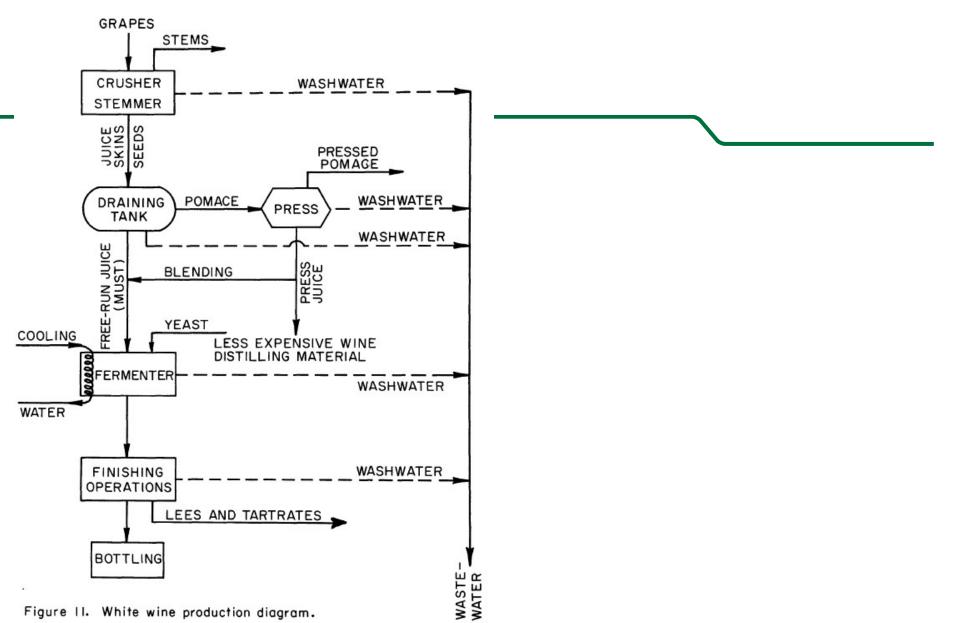
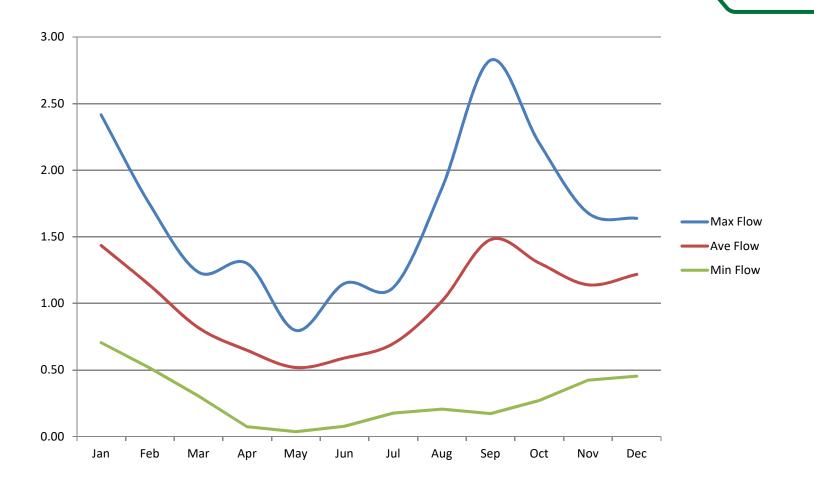


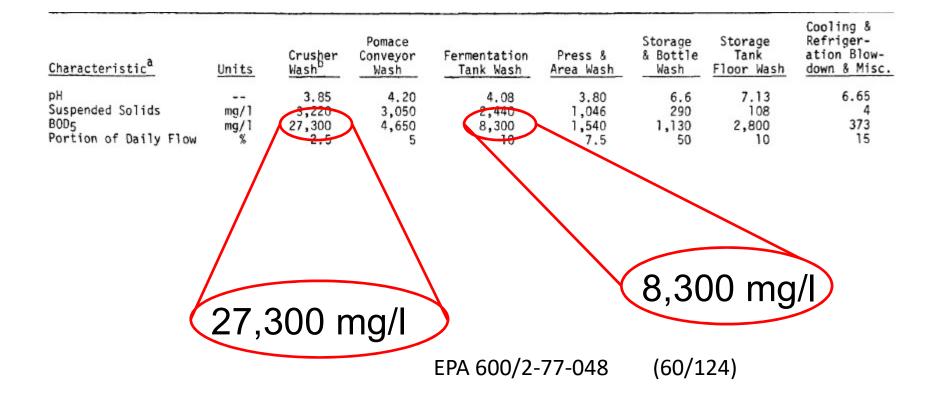
Figure 11. White wine production diagram.



Summary of Production

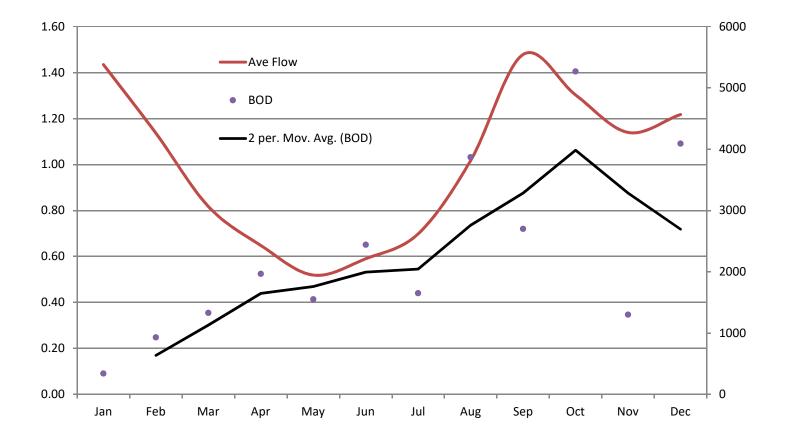
- Grapes are an Annual Crop; the industry is cyclic based on the season and winery activity
- Can not store grapes
- Different winemaking processes produce different wastewater
- Seasonal wastewater flows and loads

Normalized Flow


Characteristics

<u>Characteristic</u> ^a	<u>Units</u>	Crusher Wash ^D	Pomace Conveyor Wash	Fermentation Tank Wash	Press & Area Wash_	Storage & Bottle Wash	Storage Tank Floor Wash	Cooling & Refriger- ation Blow- down & Misc.
рH		3.85	4.20	4.08	3.80	6.6	7.13	6.65
Suspended Solids	mg/1	3,220	3,050	2,440	1,046	290	108	4
B0D5	mg/1	27,300	4,650	8,300	1,540	1,130	2,800	373
Portion of Daily Flow	%	2.5	5	10	7.5	50	10	15

EPA 600/2-77-048 (60/124)



Characteristics

Normalized Flow and BOD₅ mg/l

J-U-B ENGINEERS, INC.

Trends in Industry

- Recover liquid waste, valuable
 - Juice (SBOD)
 - Alcohol (SBOD) Could be distilled
- Technology allows Separation
 - centrifuge, membrane, vacuum systems...
- Strength could be Dropping
- TSS managed on-site, dryer due to separation of liquid (valuable)

Lesson

- Could be Function of Scale
 - Small facility 1 wine : 5 wastewater
 - Large facility 1 wine : 1 wastewater
- Confirm Process
 - How much
 - How strong
 - When

Wastewater Production, Small

- 20,000 cases
 - 9 liters per case, (12 bottles per case, 0.75 liters/bottle)
 - 3:1 wastewater : wine (typical to high)
- 142,000 gallons per year
- 22,000 gallons in September
 - -20 pounds of BOD₅ / day
- 57,000 gallons in October
 - 70 pounds of BOD₅ / day (280 People)
- 22,000 gallons in November
 - 17 pounds of BOD₅ / day
- 41,000 gallons the rest of the year
 - 2.5 pounds of BOD₅ / day

Wastewater Production, Medium

- 300,000 cases
- 2.1 MG gallons per year
- 320,000 gallons in September
 300 pounds of BOD₅ / day
- 860,000 gallons in October (28,000 gpd)
 - 1,000 pounds of BOD₅ / day (4,300 People)
- 320,000 gallons in November
 - 250 pounds of BOD_5 / day
- 41,000 gallons the rest of the year
 - 40 pounds of BOD₅ / day (August) (170 People)

Winery Wastewater

- Seasonal Flow
- Seasonal Load
- Load Increases Rapidly
- Confirm
 - Small, not economical to maximize liquid recovery and manage solids
 - Large, economical to recovery

Now What ?

- Wine Maker and Brewer
 - Just want to make product
 - Want the wastewater to go away
 - Maybe, some municipal systems take it
 - Others cannot
- Municipality
 - The City Welcome here
 - WWTP Don't cause any issues

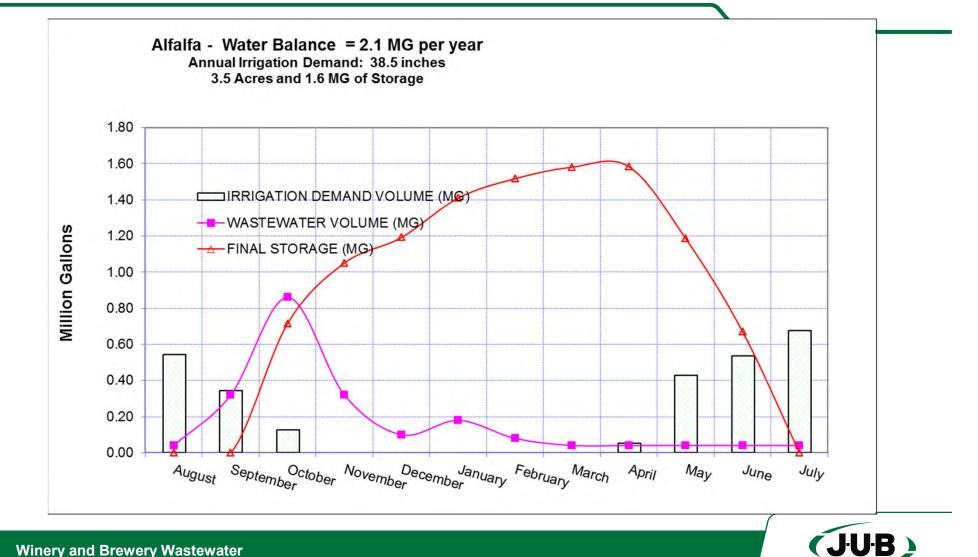
Mitigation

- Applicable To:
 - Beer
 - Wine
 - Hard Cider
 - Cheese
 - Yogurt
 - Restaurants
 - Super Stores

Warning !

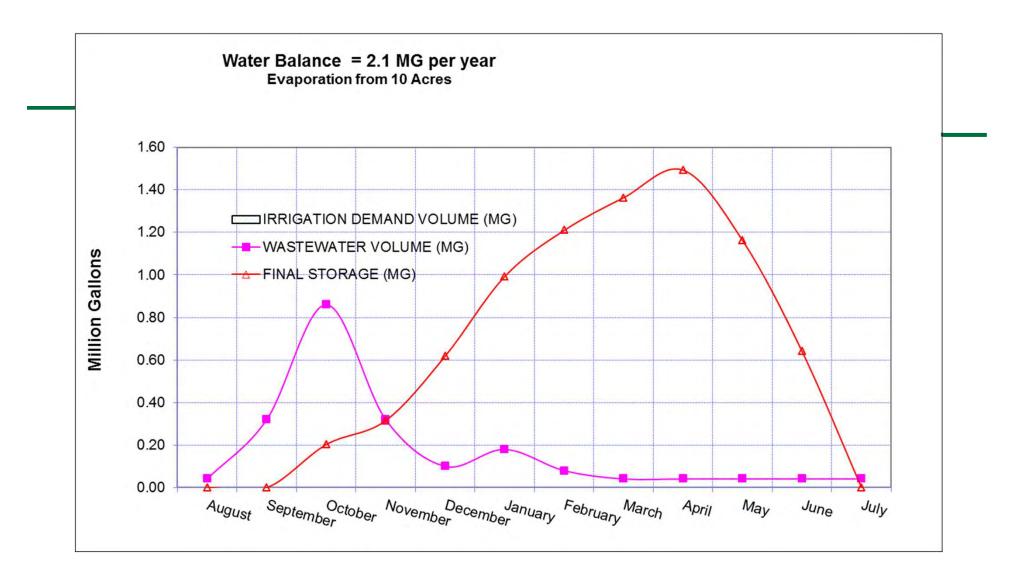
- Heavy Industry (potato, onion, fruit etc.)
 - Study specifically
 - Get independent help
- Data Center
 - Study specifically
 - Get independent help
 - Low strength
 - 75 degrees
 - 1.3 MGD per center

Treatment and Disposal


- Disposal, Answer this First
- The answer will control level of treatment
 - On site (very little, manage odors)
 - <u>Store and Irrigate</u>, crop, landscaping
 - <u>Drain-field</u>, and other subsurface options
 - Evaporation
 - Off site
 - Surface water discharge (highly treated)
 - Industrial treatment facility (maybe none)
 - Municipal treatment facility (pre-treatment)
 - Irrigation someone else's crop (very little)

On-Site

- Irrigation, Medium Size 2.1 MG/year
 - Seasonal Discharge, irrigation season
 - Winter Storage
 - 3.5 Acres of Crop
 - 1.6 MG of Storage
 - Manage TDS
 - Industrial discharge
 - Facultative pond for treatment, settling basin
 - Aeration for odor control


Winery and Brewery Wastewater

J-U-B ENGINEERS, INC.

On-Site

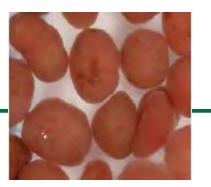
- Evaporation, Medium Size 2.1 MG/year
 - 10 Acre Evaporation Pond
 - Mechanical Evaporation \rightarrow 2.5 Acres (location)
 - Settling basin to capture solids
 - Dredging plan
 - Aeration for odor control

Treatment for Disposal to a Municipal Sewer

- Local Limits
- BOD < 300 mg/l (match domestic)
- Surcharge
 - Limit BOD < 300 mg/l
 - Not to exceed BOD < 1500 mg/l
 - Pay XX \$/ pound discharged
 - \$0.30 per pound of TSS
 - \$0.35 per pound of BOD₅

Treatment for Disposal to a Municipal Sewer

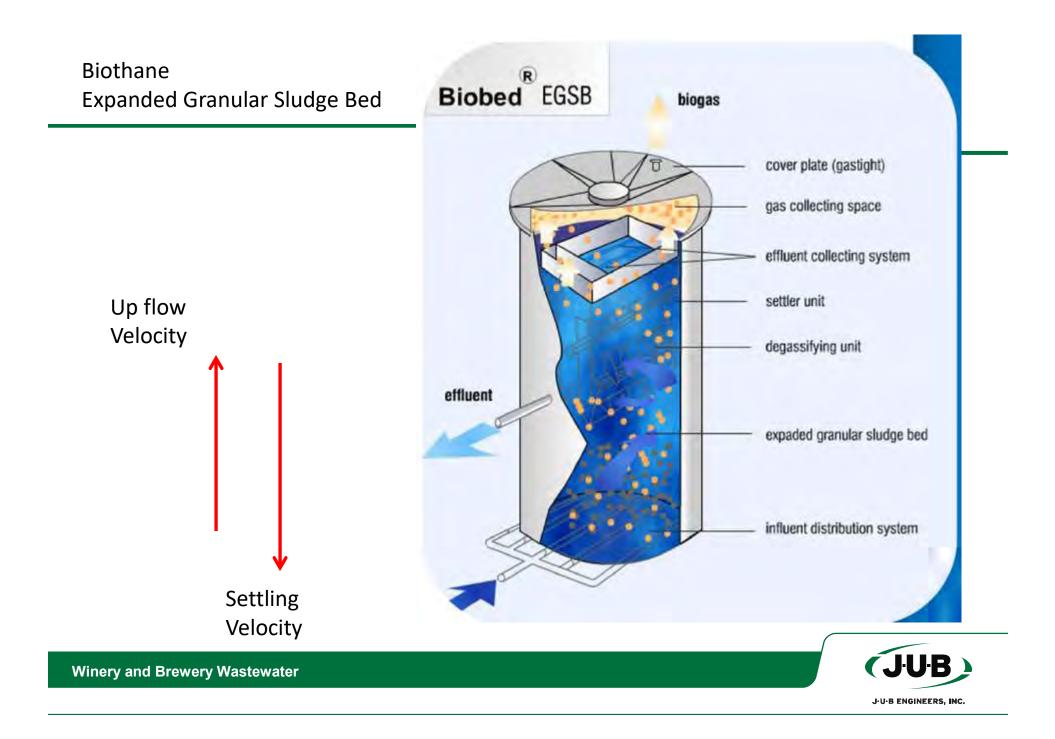
- Aerobic facultative lagoons
- Anaerobic
 - Granular Sludge ?
 - Followed by Aeration
- Activated sludge Conventional, SBR and MBR
- Fixed film bioreactors
- Moving bed Bioreactors
- Direct Discharge to a Municipality

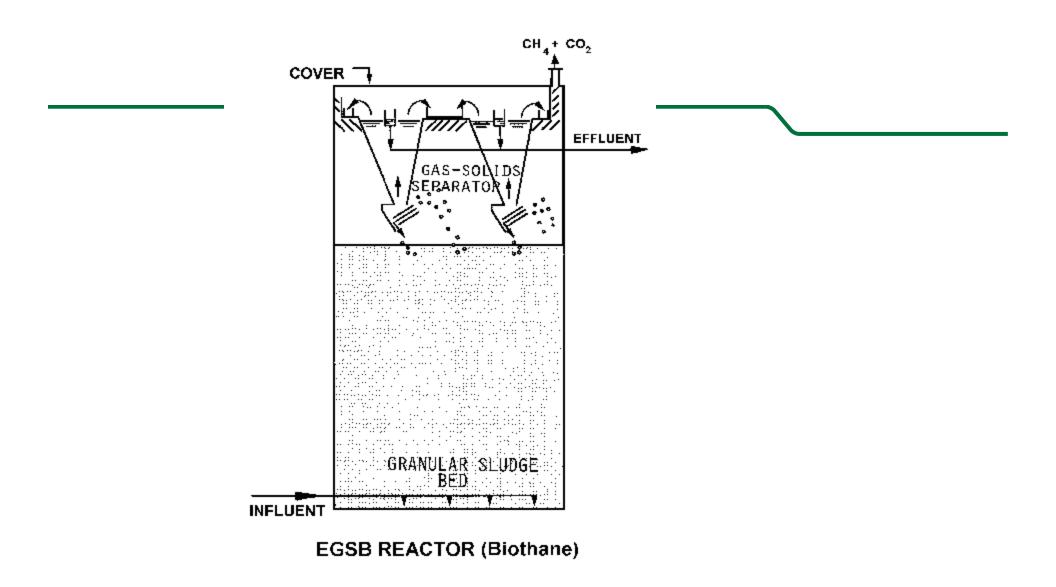


Treatment for Disposal to a Municipal Sewer (most likely ?)

- Anaerobic
 - Granular Sludge
 - Followed by Aeration
- Activated sludge


• Direct Discharge to a Municipality


Granular Sludge


- Granular sludge
- Settles fast

- Expanded granular sludge bed
- High loading rates are lowering capital cost for digestion.
- Followed by aeration
- Can survive periods without food ? Yes.

Package MBR

- Activated sludge Package MBR
- 5,000 gallons per day
- 100,000 gallons per day
- 2 mm screen before package MBR (included)

Package MBR

- Concentrated Oxygen, dense biology
- High quality reuse water
- Seeded with WAS (discharge to sewer)

Pre-Engineered Metal Building

Package MBR City of West Richland

Entire plant fits neatly inside one building!

50,000 gpd Re-use Ready

Direct Discharge

- Direct Discharge to a Municipality
- Minimum pre treatment
 - Lower TSS, skins settle in the sewer pipe
 - Adjust pH, concrete pipe, neutral pH, (dilution)
 - Generally easy to manage on-site
- What about BOD₅

Direct Discharge

- Example
- Medium Winery (300,000 cased)
- 860,000 gallons in October (28,000 gpd)
 - 1,000 pounds of BOD₅ / day
 - (4,300 People)

Biology to Treat, Approximate

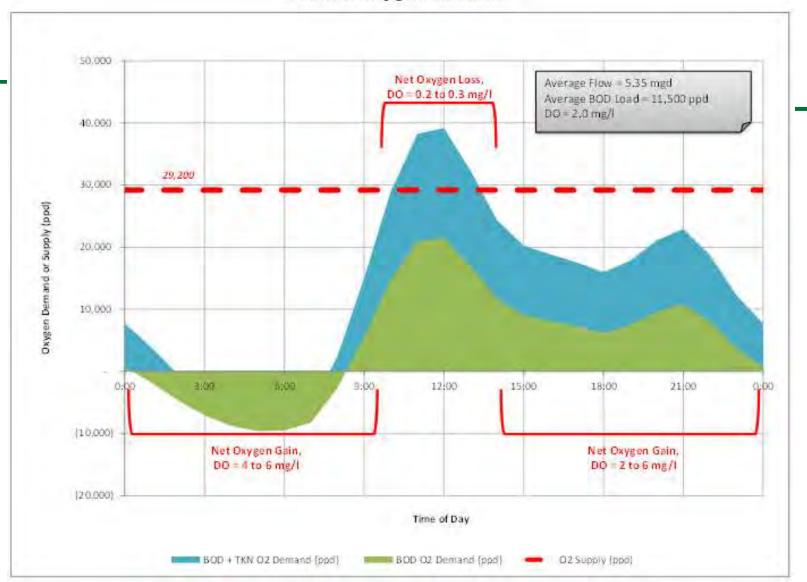
- Biomass needed for 1,000 pounds of BOD₅ / day
- 6850 pounds of biomass, about
- Increase in MLSS
 - 0.5 MG reactor \rightarrow from 2000 to 3640 mg/l
 - -2.58 MG reactor \rightarrow from 2000 to 2320 mg/l
 - $6 \text{ MG reactor} \rightarrow \text{from } 2000 \text{ to } 2140 \text{ mg/l}$
- 55,000 gallons of RAS/WAS (at 1.5%)
- 65 pounds of O₂ per hour
- 45 horsepower aeration

Managing Winery WW at WWTP

- Can you come up with the biology?
- Can you provide the air?
- Can you manage the extra biosolids?

Managing Winery WW at WWTP

- Can you come up with the biology?
 Likely, depending on time of day
- Can you provide the air?
 - Likely, depending on time of day
- Can you manage the extra biosolids?
 - 600 to 800 pound per day, dry
 - 2.3 tons per day of dewatered biosolids
 - maybe



Flow Equalization, Load Shift

- Large WWTP, Small initial winery flow
- pH adjustment tanks large enough to provide flow equalization on-site
- Meter discharge into sewer
- As flow increased evaluate performance and the need for pretreatment
- And bank fees

Diurnal Oxygen Demand

Winery and Brewery Wastewater

J-U-B ENGINEERS, INC.

High Strength Surcharge

- Uniform Cost for Uniform Service
- Pay a fee for extra service in lieu of pretreatment
- Discharge at night for a lower fee

Questions

SIGNATURE BREWS

High Desert Hefeweizen

Pinnacle Porter

Metolius Golden Ale

Outback Old Ale

Elk Lake IPA

